פרופ׳ מאנו קאפור פרופ׳ לפסיכולוגיה, האוניברסיטה לחינוך של הונג קונג (HKIED)

טעות וכישלון כמנופי למידה

הכנס הארצי הרביעי למנהלי בתי ספר ולמפקחים כ״ב בחשוון התשע״ז <mark>23.11.16</mark>

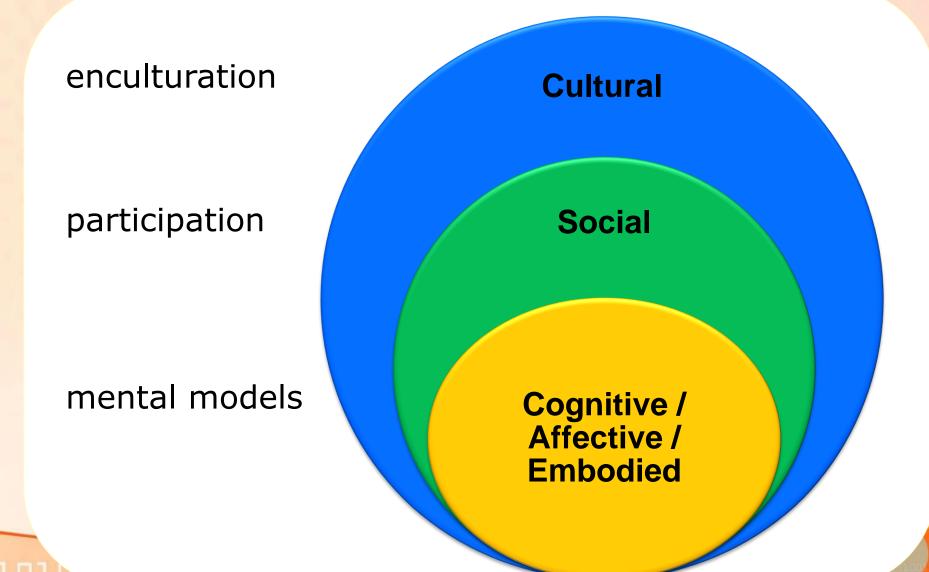
مמכון הישראלי למנהיגות בית ספרית المعهد الاسر انيلى للقيادة المدرسية

Learning from Productive Failure

Prof. Dr. Manu Kapur

Department of Psychological Studies The Education University of Hong Kong <u>www.manukapur.com</u> <u>mkapur@eduhk.hk</u>

Two BIG Questions


The Question of Learning:

How do we come to understand something new?

The Question of Design:

How do we design for initial learning?

What is Learning?

Shared understanding of the problem and goals

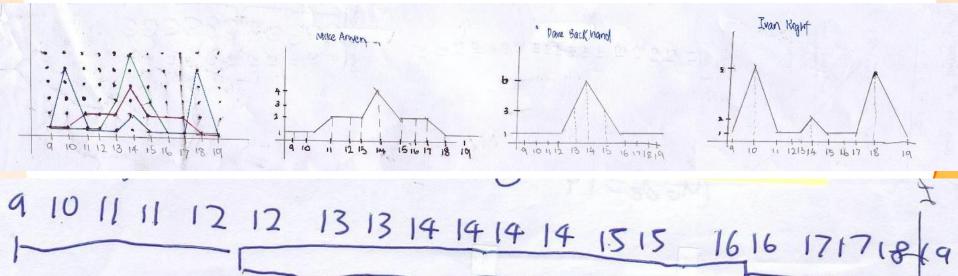
Problem of noticing/seeing

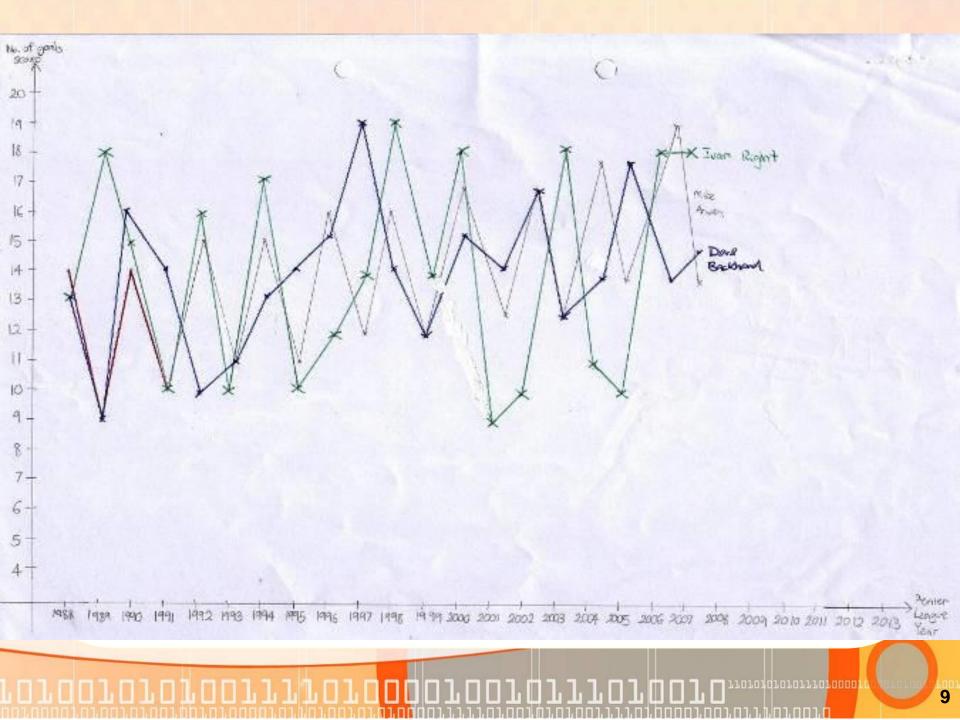
novices see different things from experts

Learning goals

developing not just knowledge, but also social participation, and disciplinary dispositions simultaneously

Learning from Failure

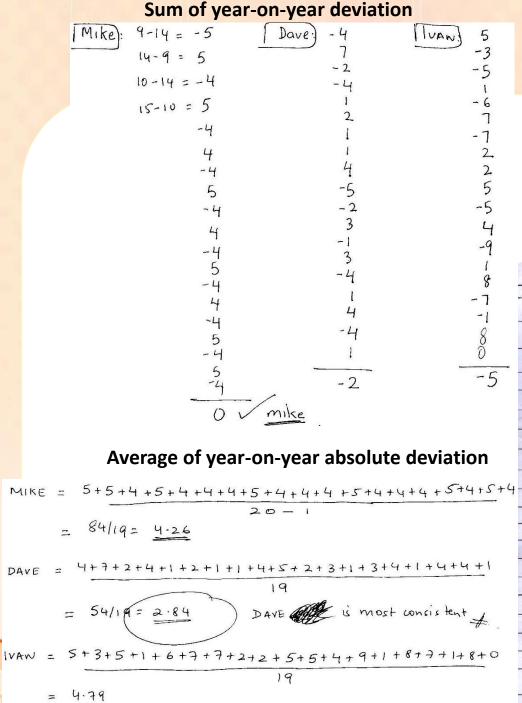

If learning from failure is so intuitively compelling, why do we wait for it to happen? Why can't we deliberately design for it in the initial learning?


The Problem (Grade 8/9 students)

Who's the most consistent striker?

Year	Mike Arwen	Dave Backhand	Ivan Right
1988	14	13	13
1989	9	9	18
1990	14	16	15
1991	10	14	10
1992	15	10	16
1993	11	11	10
1994	15	13	17
1995	11	14	10
1996	16	15	12
1997	12	19	14
1998	16	14	19
1999	12	12	14
2000	17	15	18
2001	13	14	9
2002	17	17	10

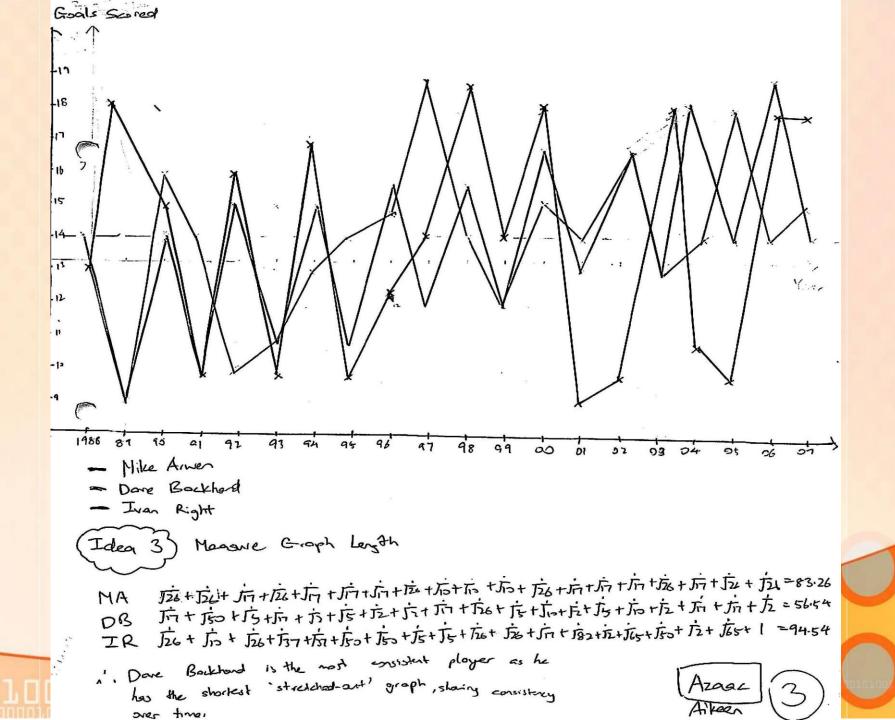
	CC	mp	ari	ng	rec	MIC	arit	y	12 M		
Mike Arwen: Mean = $\frac{280}{20}$	9	10	11	12	13	14	15	16	17	18	19
= 14 goals lyear Mode = 14	1	1	2	2	2	4	2	2	2	l	١
Dave Backhand : Mean = $\frac{280}{20}$ = 14 goals / year Mode = 14	1	I	1	1	3	6	3	1	1	1.	1
Ivan Right: Mean = $\frac{280}{20}$ = 14 goals / year Mode = 18 and 10	1	5	1	t	1	2	1	1	1	5	1



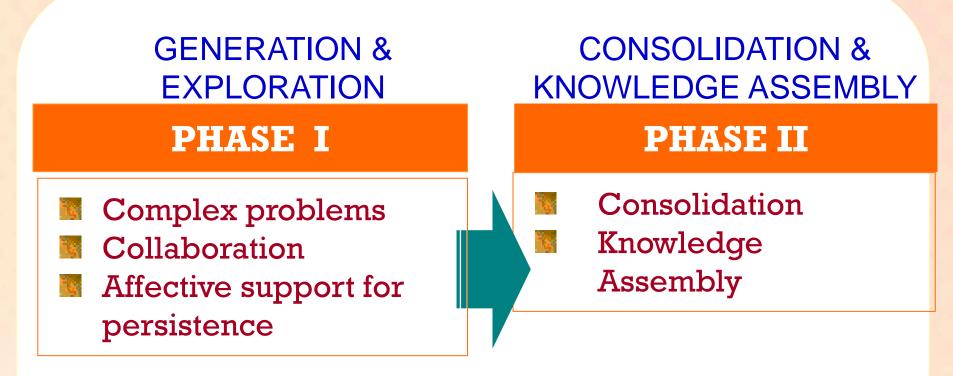
From Question poper: Average = 280 Mike has 8 years < average 4 years = average 8 years > average Dave has Typears & average 6 years = overage. Tyears > average Iven has 9 years < average 2 years = average 9 years > average

Frequency of years above, below, and at average

Consistency = years at the mean / years away from the mean

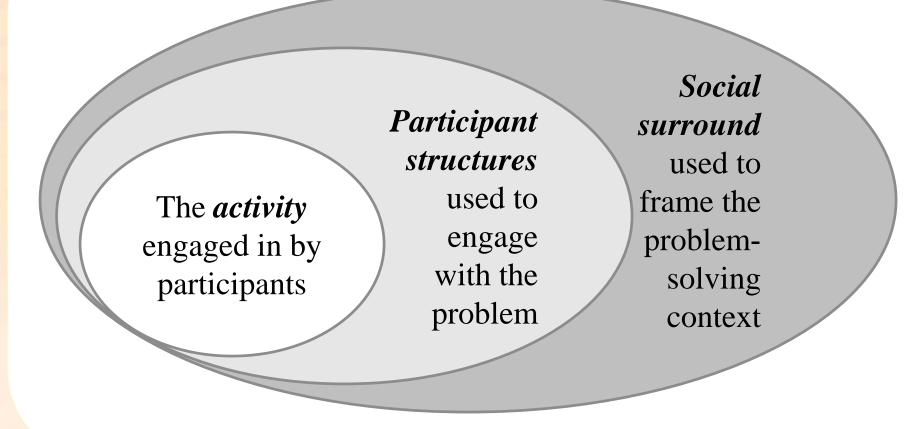


Range gnount for : Ante Mike Armen: 9 19 = 10 Pave hypelind: 9 - 19 X 16 Iven Kight: 9-19 = 10


Sum of deviations about the mean

	Year	Avg	A.M	D.B	I·R	X	1.2	1
	1983	14	14	13	13	0	1-1.	1-12
	1989	147	9	19	18	-5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_	1990	14	14	16	15	0	+2	.,+!
ì	1991	14	10	14	10	-4	0	-4,
	1992	14	15	10	16	+1	-4	
	1993	14	11	11.	10	-3	-3	-4.
	1994	(4	15	13	17	+1	-1	+3
`+4 -	Igas	14	11	14	10	-3	0	-4
	1996	14	16	15	12	+2	+1	-2
	1907	14	. 12	19	14	-2	+5	0.
	1008	14	16	14	19	+2	0	+5
	1999	14	12.	12	14	-2	-2	0.
	2000	14	17.	15	18	+3	+1	+4.
	2001	14	13.	14	9	-1.	0	-5.
	2002	14	17	17	16	+3	+3	-4.
	2003	14	13	13	81	-\$	-1	+4
	2004	14	18	14	1	+4	0	-3
-	2005	14	14	18	10	Contraction of the second	+4	-4.
	. 006	14	19	14	18	+5	0	+4.
	2007	14	14	12	[3	0	+1	+4
-	the second second	·		-	Total:	-	•	-0

11



Designing for Productive Failure (Kapur & Bielaczyc, 2012)

n n 1. n 1. 1. 1. n 1

Three layers of the PF design (Kapur & Bielaczyc, 2012)

170707070107770<mark>70000</mark>

Embodied Mechanisms

Cognitive

- 1. Activation
- 2. Noticing
- 3. Awareness of gaps
- 4. Sensitivity
- 5. Selection

Social

1.explanation & elaboration
2.Shared representation
3.Multiple perspectives
4.vicarious learning

Affective

Situational interest
Goal Orientation
Frustration
Persistence

Cultural

 Failure as normative
Failure as positive
Effort and Growth
Disciplinarity: ways of thinking and being

Productive Failure vs. Direct Instruction

Target Concepts:

1. Average Speed (Kapur, 2010; Kapur & Bielaczyc, 2012)

2. Standard Deviation (Kapur, 2012, 2013, 2014)

Productive Failure Problem solving followed by instruction

Direct Instruction Instruction followed by problem solving

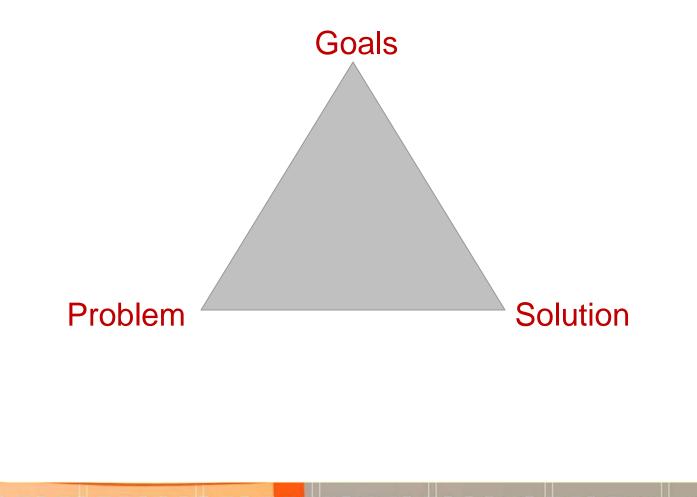
Quasi- and controlled pre-post experiments with the following dependent variables:

- 1) Procedural Knowledge
- 2) Conceptual Knowledge
- 3) Transfer

Key Findings: Student Learning

Findings on student learning trigger shifts in teacher learning:

• PF outperformed DI on conceptual understanding and transfer without compromising procedural knowledge (Kapur, 2010, 2012, Kapur & Bielaczyc, 2012)


• The basic knowledge fallacy

- DI constrains design ability (Kapur, 2014)
 - The creativity fallacy
- Students that seem strikingly dissimilar on general and math ability (PSLE) appear strikingly similar in terms of their design ability (Kapur & Bielaczyc, 2012)
 - The ability/attribution fallacy

01010111010000

Working with Teachers & School Leaders

Developing a shared understanding of the:

Shared Goals?

- a. Mathematics knowledge to be able to perform well on exams
- b. a + deep conceptual understanding
- c. b + ability to transfer to novel situations
- d. c + mathematical thinking and reasoning
- e. d + 21CC skills such as inventiveness, critical thinking, collaboration, persistence, resilience, and so on.

Key Findings: Teacher Learning

- Domain Knowledge
 - I learnt the math better...
- Pedagogical & Design Knowledge
 - can't ask someone to teach swimming if they have not entered water...
- More shifts in teacher beliefs:
 - Teachers consistently underestimate students' design ability
 - The expertise paradox
 - *PF* teachers consistently report that they will use more time to teach the same concept
 - The efficiency fallacy
 - Scaffolding requires failure!

School Leaders

- Additive Mindset
- Instant Tree Mentality
- The need to engage in PD themselves!
- Unit of change: pedagogy or culture?

In Ending...

Learning vs. performance...

Productive	Productive				
Success	Failure				
Unproductive	Unproductive				
Success	Failure				

